(3^2x)+(3^x+1)=10

Simple and best practice solution for (3^2x)+(3^x+1)=10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3^2x)+(3^x+1)=10 equation:



(3^2x)+(3^x+1)=10
We move all terms to the left:
(3^2x)+(3^x+1)-(10)=0
We get rid of parentheses
3^2x+3^x+1-10=0
We add all the numbers together, and all the variables
3^2x+3^x-9=0
We move all terms containing x to the left, all other terms to the right
3^2x+3^x=9

See similar equations:

| 3^2x+3^x+1=10 | | 11x^2+13x-17=0 | | 8x–4=24+3(2x–10) | | 5f+4=34 | | 9*x*9=18 | | 75/x-3=1,5 | | 5x^2-18x+180=0 | | -6b+-b+11b-b=12 | | Y^2-34y+273=0 | | 1/8(x-8)=-4 | | 13b-7b=6 | | 2u+6u+2u=20 | | 4j-3j=14 | | 6m-5m=20 | | 3w-2w=11 | | (x–2)²–(x–1)²=-2x+1 | | 2y+60=8y | | (x-1)0.75=64 | | 3x-15=20x+12 | | (6x*6x)+2x/2x=0 | | 7x+23=57 | | )2(6)105a−= | | b/6-3=5 | | 6x+(6+x)=2 | | -343=-1-343a/7-343a/49-343a/343 | | 24x16+75=459 | | 16x22+23=372 | | 12x13+44=212 | | 6^x+4^x=9x | | 5+x/5+x=2/5 | | 4x14+18=72 | | X^2+-10y=0 |

Equations solver categories